
DISTRIBUTED-MEMORY PARALLEL ALGORITHMS FOR
DISTANCE-2 COLORING AND THEIR APPLICATION TO

DERIVATIVE COMPUTATION∗

DORUK BOZDAĞ† , ÜMİT V. ÇATALYÜREK‡ , ASSEFAW H. GEBREMEDHIN§ ,

FREDRIK MANNE¶, ERIK G. BOMAN‖, AND FÜSUN ÖZGÜNER∗∗

Abstract. The distance-2 graph coloring problem aims at partitioning the vertex set of a graph
into the fewest sets consisting of vertices pairwise at distance greater than two from each other. Its
applications include derivative computation in numerical optimization and channel assignment in
radio networks. We present efficient, distributed-memory, parallel heuristic algorithms for this NP-
hard problem as well as for two related problems used in the computation of Jacobians and Hessians.
Parallel speedup is achieved through graph partitioning, speculative (iterative) coloring, and a BSP-
like organization of parallel computation. Results from experiments conducted on a PC cluster
employing up to 96 processors and using large-size real-world as well as synthetically generated test
graphs show that the algorithms are scalable. In terms of quality of solution, the algorithms perform
remarkably well—the number of colors used by the parallel algorithms was observed to be very close
to the number used by the sequential counterparts, which in turn are quite often near optimal.
Moreover, the experimental results show that the parallel distance-2 coloring algorithm compares
favorably with the alternative approach of solving the distance-2 coloring problem on a graph G by
first constructing the square graph G2 and then applying a parallel distance-1 coloring algorithm on
G2 . Implementations of the algorithms are made available via the Zoltan load-balancing library.

Key words. Distance-2 graph coloring; distributed-memory parallel algorithms; Jacobian com-
putation; Hessian computation; sparsity exploitation; automatic differentiation; combinatorial scien-
tific computing

AMS subject classifications. 05C15, 05C85, 68R10, 68W10

1. Introduction. Many algorithms in scientific computing, including algorithms
for nonlinear optimization, differential equations, inverse problems, and sensitivity
analysis, need to compute the Jacobian or Hessian matrix. In large-scale problems the
derivative matrices are typically sparse, a property that needs to be exploited to make
computation efficient, and in some cases, even feasible. An archetypal model in the
efficient computation of sparse Jacobian and Hessian matrices—whether derivatives
are calculated using automatic differentiation or estimated using finite differencing—
is a distance-2 coloring of an appropriate graph [11]. Distance-2 coloring also finds
applications in other areas, such as in channel assignment problems in radio networks
[18, 19]. In a distance-k coloring, any two vertices connected by a path consisting
of at most k edges are required to receive different colors, and the goal is to use
as few colors as possible. Distance-1 coloring is used, among others, for discovering
concurrency in parallel scientific computing [15, 16, 23].

∗This work was supported by the U.S. Department of Energy’s Office of Science through the
CSCAPES SciDAC Institute; by the U.S. National Science Foundation under Grants #CNS-0643969
and #CNS-0403342; by Ohio Supercomputing Center #PAS0052; and by the Norwegian Research
Council through the Evita program.

†Ohio State University, Columbus, Ohio (bozdagd@ece.osu.edu).
‡Ohio State University, Columbus, Ohio (umit@bmi.osu.edu).
§Purdue University, West Lafayette, Indiana (agebreme@purdue.edu).
¶University of Bergen, Bergen, Norway (Fredrik.Manne@ii.uib.no).
‖Sandia National Laboratories, Albuquerque, New Mexico (egboman@sandia.gov). Sandia is a

multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
∗∗Ohio State University, Columbus, Ohio (ozguner@ece.osu.edu).

1

2 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

In parallel applications where a distance-k coloring is needed, the graph is ei-
ther already partitioned and mapped or needs to be partitioned and mapped onto
the processors of a distributed-memory parallel machine. Under such circumstances,
gathering the graph on one processor to perform the coloring sequentially is pro-
hibitively time consuming or infeasible due to memory constraints. Hence the graph
needs to be colored in parallel. Finding a distance-k coloring using the fewest colors
is an NP-hard problem [20], but greedy heuristics are effective in practice, as they
run fast and provide solutions of acceptable quality [7, 11, 14]. They are, however,
inherently sequential and thus challenging to parallelize.

We have developed a variety of efficient greedy parallel algorithms for distance-2
coloring on distributed memory environments, and we report in this paper on the
design, analysis, implementation, and experimental evaluation of the algorithms. Ap-
propriate variants of the algorithms tailored for Jacobian and Hessian computation
are also presented. The algorithms presented here are obtained by extending the
parallelization framework we developed in a recent work in the context of distance-1
coloring [5]. The framework is an iterative, data-parallel, algorithmic scheme that
proceeds in two-phased rounds. In the first phase of each round, processors concur-
rently color the vertices assigned to them in a speculative manner, communicating at
a course granularity. In the second phase, processors concurrently check the validity
of the colors assigned to their respective vertices and identify a set of vertices that
needs to be recolored in the next round to resolve any detected inconsistencies. The
scheme terminates when every vertex has been colored correctly.

One of the challenges involved in extending the framework outlined above to the
distance-2 coloring case is devising an efficient means of information exchange between
processors hosting a pair of vertices that are two edges away from each other in the
graph. For such pairs of vertices, relying on a direct communication between the
corresponding processors would incur unduly high communication cost and locally
storing duplicates of distance-2 neighborhoods would require unduly large memory
space. Instead, we employ a strategy in which information is relayed via a third
processor (the processor owning a mutual distance-1 neighbor of vertices two edges
away from each other) as needed. We show that the parallel algorithms designed
using this strategy yield good speedup with increasing number of processors while
using nearly the same number of colors as a serial greedy algorithm. We also show
that the algorithms outperform the alternative approach based on distance-1 coloring
of a square graph.

A preliminary version of a small portion of the work presented here has appeared
in a conference paper [4]. Compared to [4], the current paper has several new contri-
butions. In terms of the basic distance-2 coloring algorithm for general graphs, the
algorithm has been described much more rigorously, its complexity has been analyzed,
and possible variations of the algorithm have been outlined; moreover, the experimen-
tal performance evaluation of the algorithm is conducted much more thoroughly, and
is carried out on a larger set of test problems and on a larger number of processors.
In addition, new algorithms for distance-2 coloring of bipartite graphs (for Jacobian
computation) and restricted star coloring of general graphs (for Hessian computation)
have been presented and experimentally evaluated.

To the best of our knowledge, this paper is the first to present demonstrably
efficient and scalable parallel algorithms for distance-2 coloring on distributed-memory
architectures. Gebremedhin, Manne, and Pothen [13] have developed shared-memory
parallel algorithms for distance-2 coloring. They have also provided a comprehensive

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 3

review of the role of graph coloring in derivative computation in [11], and designed
efficient serial algorithms for acyclic and star coloring (which are used in Hessian
computation) in [14]. The literature on algorithmic graph theory features some work
related to the distance-2 coloring problem [1, 2, 18, 19]. Readers are referred to
Section 11.4 of the paper [11] and Section 2.3 of the paper [14] for more pointers to
theoretical work on distance-k and related coloring problems.

The remainder of this paper is organized as follows. §2 provides background: it
includes a self-contained review of the coloring models for sparse derivative matrix
computation that are relevant for this paper, and a brief discussion of serial greedy col-
oring algorithms, since they form the foundation for the parallel algorithms presented
here. §3 sets the stage for a detailed presentation of the parallel distance-2 coloring
algorithm for general graphs in §4 by discussing several algorithm design issues. §5
shows how the algorithm described in §4 can be adapted for restricted star coloring of
general graphs (for Hessian computation) and distance-2 coloring of bipartite graphs
(for Jacobian computation). §6 contains a detailed computational evaluation of the
performance of the parallel algorithms, and §7 concludes the paper.

2. Background.

2.1. Preliminary concepts and notations. Two distinct vertices in a graph
are distance-k neighbors if a shortest path connecting them consists of at most k
edges. We denote the set of distance-k neighbors of a vertex v by Nk(v). The degree-
k of a vertex v , denoted by dk(v), is the number of distinct paths of length at most
k edges starting at v . Two paths are distinct if they differ in at least one edge. Note
that d1(v) = |N1(v)| , and d2(v) =

∑
w∈N1(v) d1(w). In general, dk(v) ≥ |Nk(v)| . We

denote the average degree-k in a graph by dk .
A distance-k coloring of a graph G = (V, E) is a mapping φ : V → {1, 2, . . . , q}

such that φ(v) 6= φ(w) whenever vertices v and w are distance-k neighbors. A
distance-k coloring of a graph G = (V, E) is equivalent to a distance-1 coloring of
the k th power graph Gk = (V,F), where (v, w) ∈ F whenever vertices v and w are
distance-k neighbors in G . A distance-k coloring of a graph G = (V, E) can equiv-
alently be viewed as a partition of the vertex set V into q distance-k independent
sets—sets of vertices at a distance greater than k edges from each other. Variants
of distance-k coloring are used in modeling partitioning problems in sparse Jaco-
bian and Hessian computation. We review these in the next subsection; for a more
comprehensive discussion, see [11, 14].

2.2. Coloring models in derivative computation. The computation of a
sparse m×n derivative matrix A using automatic differentiation (or finite differenc-
ing) can be made efficient by first partitioning the n columns into q disjoint groups,
with q as small as possible, and then evaluating the columns in each group jointly
(as a sum) rather than separately. More specifically, the values of the entries of the
matrix A are obtained by first evaluating a compressed matrix B ≡ AS , where S is
an n × q seed matrix whose (j, k) entry sjk is such that sjk equals one if and only
if column aj belongs to group k and zero otherwise, and then recovering the entries
of A from B .

The specific criteria used to define a seed matrix S for a derivative matrix A de-
pends on whether the matrix A is Jacobian (nonsymmetric) or Hessian (symmetric).
It also depends on whether the entries of A are to be recovered from the compressed
representation B directly (without any further arithmetic), via substitution (by im-
plicitly solving a set of simple triangular systems of equations), or via elimination

4 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

c1 c2

c5

c4

c3

c1 c2

c5

c4

c3

a11 0 0 0 a15
0 a22 a23 0 0
0 a32 a33 a34 a35
0 0 a43 a44 a45
a51 0 a53 a54 a55

a11 a12 0 0 a15
a21 a22 0 0 0
a31 0 0 a34 0
0 0 a43 a44 a45

A
Ga

Ga
2

c1

c3

c2

c4
c5

c1

c3

c2

c4

c5

r1
r2
r3
r4

Gb [V2]
2GbA

Fig. 2.1. Equivalence among structurally orthogonal column partition of A , distance-2 coloring
of G(A) and distance-1 coloring of G2(A) . Top: symmetric case. Bottom: nonsymmetric case.

(by solving a rectangular system of equations). In this paper we focus on only direct
methods.

2.2.1. Structurally orthogonal partition. Curtis, Powell, and Reid [9] showed
that a structurally orthogonal partition of a Jacobian matrix A—a partition of the
columns of A in which no two columns in a group share a nonzero at the same row
index—gives a seed matrix S where the entries of A can be directly recovered from
the compressed representation B ≡ AS . The structure of a Jacobian matrix A can
be represented by the bipartite graph Gb(A) = (V1,V2, E), where V1 is the row vertex
set, V2 is the column vertex set, and (ri, cj) ∈ E whenever the matrix entry aij is
nonzero. A partitioning of the columns of the matrix A into groups consisting of
structurally orthogonal columns is equivalent to a partial distance-2 coloring of the
bipartite graph Gb(A) on the vertex set V2 [11]. It is called “partial” because the row
vertex set V1 is left uncolored.

A structurally orthogonal column partition could also be used in computing a
Hessian via a direct method, albeit that symmetry is not exploited. Specifically, Mc-
Cormick [20] showed that a structurally orthogonal partition of a Hessian is equivalent
to a distance-2 coloring of its adjacency graph. The adjacency graph Ga(A) of a Hes-
sian A has a vertex for each column, and an edge joins column vertices ci and cj

whenever the entry aij , i 6= j , is nonzero; the diagonal entries in A are assumed
to be nonzero and they are not explicitly represented by edges in the graph Ga(A).
Figure 2.1 illustrates how a structurally orthogonal column partition of a matrix is
modeled by a distance-2 coloring in the appropriate graph. The right most subfigures
show the equivalent distance-1 coloring formulations in the appropriate square graph.

2.2.2. Symmetry-exploiting partition. Powell and Toint [22] were the first
to introduce a symmetry-exploiting technique for computing a Hessian via a direct
method. When translated to a coloring φ of the adjacency graph, the partition
Powell and Toint suggested for a direct Hessian computation requires that (1) φ be
a distance-1 coloring, and (2) in every path v, w, x on three vertices, the terminal
vertices v and x are allowed to have the same color, but only if the color of the

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 5

middle vertex w is lower in value. A coloring that satisfies these two requirements
has been called a restricted star coloring in [14].

Coleman and Moré [8] showed that a symmetrically orthogonal partition of a
Hessian is sufficient for a direct recovery, and established that such a partition is
equivalent to a star coloring of the adjacency graph of the Hessian. A star coloring is
a distance-1 coloring where, in addition, every path on four vertices uses at least three
colors. The name is due to the fact that in a star-colored graph, a subgraph induced
by any two color classes is a collection of stars. Note that the three coloring models
for direct Hessian computation discussed here can be ranked in an increasing order
of restriction (decreasing order of accuracy) as star coloring, restricted star coloring,
distance-2 coloring.

2.3. Greedy coloring algorithms. An optimization problem associated with
distance-k, restricted star, or star coloring asks for an appropriate coloring with the
fewest colors, and each is known to be NP-hard [8, 14, 20]. In practice, greedy al-
gorithms have been found effective in delivering good suboptimal solutions for these
problems fast [7, 14]. A greedy algorithm for each of these problems progressively
extends a partial coloring of a graph by processing one vertex at a time, in some
order; there exist a number of effective ordering techniques that are based on some
variation of vertex degree [7, 14]. In the step where a vertex v is colored, first, a
set F of forbidden colors for the vertex v is obtained by exploring the appropriate
neighborhood of v . Then, the smallest allowable color (not included in F) is chosen
and assigned to v .

In the case of distance-1 coloring, such a greedy algorithm uses at most ∆ + 1
colors, where ∆ is the maximum degree-1 in the graph. The quantity ∆+1 is a lower
bound on the optimal number of colors needed in a distance-2 coloring. Furthermore,
the number of colors used by a greedy distance-2 coloring algorithm is bounded from
above by min{∆2+1, n} , where n is the number of vertices in the input graph. Using
this bound, McCormick [20] showed that the greedy distance-2 coloring algorithm is
an O(

√
n)-approximation algorithm.

Greedy algorithms for distance-1 and distance-2 coloring can be implemented such
that their respective complexities are O(nd1) and O(nd2). Gebremedhin et al. [14]
have developed O(nd2)-time greedy algorithms for star and restricted star coloring.
Their algorithm for star coloring takes advantage of the structure of the two-colored
induced subgraphs—the collection of stars—and uses fairly complex data structures to
maintain them. In this paper we develop parallel versions of the greedy algorithms for
distance-2 and restricted star coloring. We considered the simpler variant, restricted
star coloring, instead of star coloring, since restricted star coloring can be derived via
a simple modification of the parallel algorithm for the distance-2 coloring problem,
which is the main focus of this paper.

3. Design issues. The parallel distance-2 coloring algorithm proposed in this
paper will be presented in detail in §4. Here we discuss the major issues that arise in
the design of the algorithm and the assumptions and decisions we made around them.

3.1. Data distribution. The way in which the input graph is partitioned and
mapped to processors has implications for both load balance and inter-processor com-
munication. A graph could be partitioned among processors either by partitioning
the vertex set or by partitioning the edge set. Traditionally, vertex partitioning has
been the most commonly used strategy for mapping graphs (or matrices) to proces-
sors [3, 6, 10]. When a vertex partitioning is used, edges are implicitly mapped to

6 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

processors, with every crossing edge essentially being duplicated on the two proces-
sors to which its endpoints are mapped. For matrices, this corresponds to mapping of
entire columns or rows to processors. To make our algorithm and its implementation
more readily usable in other parallel codes, we assume that a vertex partitioning is
used in distributing the graph among processors. A vertex partitioning classifies the
vertices of the graph into two categories: interior and boundary. An interior vertex
is a vertex all of whose distance-1 neighbors are mapped onto the same processor as
itself. A boundary vertex has at least one distance-1 neighbor mapped onto a different
processor.

3.2. Data duplication and communication mechanism. The next design
issue is data duplication and its impact on information exchange.

As stated earlier, when a vertex partitioning is used, every crossing edge is dupli-
cated, and that was the approach used in our earlier work on distance-1 coloring [5].
In such a mapping strategy, it makes sense for each processor to store the colors of
the off-processor endpoints of its crossing edges as this would require storing at most
one extra color per crossing edge. In terms of communication, such a storage scheme
necessitates each processor to send the colors of its boundary vertices to neighboring
processors as soon as the colors become available. Each receiving processor could then
store the information and use it later while coloring its own vertices. In this way, the
color of a boundary vertex is sent at most once for each of its incident crossing edges.

In the distance-2 coloring case, for each vertex, color information about vertices
that are two edges away is also needed. One way of acquiring this information would
be for each processor to keep a local copy of the subgraph induced by off-processor
vertices that are within distance two edges from its own boundary vertices. Then,
each processor could store and have access to all the needed color information as soon
as the information is received from neighboring processors. Thus, as in the distance-1
coloring case, color information could be sent as soon as it becomes available. This
would in turn allow for a flexible coloring order on each processor, since the order
in which vertices are colored can be freely determined as the algorithm proceeds.
However, this flexibility comes at the expense of extra storage. For relatively dense
graphs, large portions of the input graph may need to be duplicated on each processor.
In fact, this could happen even if there was just one high degree boundary vertex.
For this reason, we chose to duplicate just the boundary vertices and their colors, but
not more.

With this design decision in place, each processor will gain local access to distance-
1 color information just like in the distance-1 coloring algorithm, and the information
can be exchanged among the processors at the earliest possible time. But a mechanism
for exchanging color information among vertices that are two edges apart still needs to
be devised. Since such colors are not going to be stored permanently on the receiving
processor, each color will have to be resent every time it is needed. Here, there are
two basic ways in which the communication can be coordinated: one can use either
a request-based protocol or a precomputed schedule. In a request-based protocol, each
processor would send a message to its neighboring processors asking for specific color
information whenever it needs the information. It then receives the information, uses
it, and discards it. With a precomputed schedule, each processor would know the order
(at least partially) in which its neighbor processors are going to color their vertices.
Thus a processor could itself determine what color information to send to its neighbors
and when to do so. A request-based protocol gives rise to more communication than
a precomputed schedule, but on the other hand, it is more flexible as it allows for a

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 7

Algorithm 1 Overview of the parallel distance-2 coloring algorithm.
1: procedure ParallelColoring(G = (V, E), s)
2: Data distribution: G is divided into p subgraphs G1 = (V1, E1), . . . , Gp = (Vp, Ep) ,

where V1, . . . , Vp is a partition of the set V and Ei = {(v, w) : v ∈ Vi, (v, w) ∈ E} .
Processor Pi owns the vertex set Vi , and stores the edge set Ei and the ID’s of
the processors owning the other endpoints of Ei .

3: on each processor Pi , i ∈ P = {1, . . . , p}
4: Ii ← interior vertices in Vi

5: Bi ← boundary vertices in Vi . Vi = Ii ∪ Bi

6: Color the vertices in Ii

7: Assign each vertex v ∈ Bi ∪N1(Bi) a random number rand(v) , generated using
v ’s ID as seed

8: Ui ← Bi . Ui is the current set of boundary vertices to be colored by Pi

9: while ∃j ∈ P, Uj 6= ∅ do
10: TentativelyColor(Ui)
11: Ui ← DetectConflicts()

completely independent coloring order on each processor. In our algorithm we chose
to use a precomputed schedule. Even with a precomputed schedule, there exists an
opportunity for using ordering techniques at a local level on each processor, but we
fore-go a detailed study of such ordering techniques to limit the scope of this paper.

4. Parallel Distance-2 Coloring of General Graphs. We are now ready to
present the new parallel distance-2 coloring algorithm for a general graph G = (V, E).
We begin in §4.1 by providing an overview of the algorithm, and then present its details
layer-by-layer in §4.2 through §4.4. The complexity of the algorithm is analyzed in
§4.5, and a brief discussion of possible variations of the algorithm is given in §4.6. In
§5 we will show how the algorithm needs to be modified to solve the restricted star
coloring problem on a general graph G and the partial distance-2 coloring problem
on a bipartite graph Gb = (V1,V2, E).

4.1. Overview of the algorithm. Initially, the input graph G = (V, E) is
assumed to be vertex-partitioned and distributed among the p available processors.
The set Vi of vertices in the partition {V1, . . . , Vp} of V is assigned to and colored
by processor Pi . We say Pi owns Vi . In addition, processor Pi stores the adjacency
list of its vertices and the identities of the processors owning them. This initial
data distribution classifies each set Vi into sets of interior and boundary vertices
(Vi = Ii ∪Bi). We call two processors Pi and Pj neighbors if at least one boundary
vertex owned by processor Pi has a distance-1 neighbor vertex owned by processor
Pj .

Clearly, any two interior vertices owned by two different processors can safely be
colored concurrently in a distance-2 coloring. In contrast, a concurrent coloring of a
pair of boundary vertices or a pair consisting of one boundary and one interior vertex
may not be safe, as the constituents of the pair, while being distance-2 neighbors,
may receive the same color and therefore result in a conflict. We avoid the latter
situation for a potential conflict (due to a pair consisting of one boundary and one
interior vertex) by requiring that interior vertices be colored strictly before or strictly
after boundary vertices have been colored. Then, a conflict can occur only for pairs
of boundary vertices. Thus, the central part of the algorithm being presented is
concerned with how the coloring of the boundary vertices is performed in parallel.

The main idea is to perform the coloring of the boundary vertices concurrently in

8 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

a speculative manner and then detect and rectify conflicts that may have arisen. The
algorithm (iteratively) proceeds in rounds, each consisting of a tentative coloring and
a conflict detection phase. Both of these phases are performed in parallel. To reduce
the frequency of communication among processors, the tentative coloring phase is
organized in a sequence of supersteps, a term borrowed from the literature on the
Bulk Synchronous Parallel model [3] and used here in a loose sense. Specifically,
in each superstep, each processor colors a pre-specified number s of the vertices
it owns in a sequential manner, using forbidden color information available at the
beginning of the superstep, and only thereafter sends recent color information to
neighboring processors. In this scenario, if two boundary vertices that are either
adjacent or at a distance of exactly two edges from each other are colored during
the same superstep, they may receive the same color and thus cause a conflict. The
purpose of the subsequent detection phase is to discover such conflicts in the current
round and accumulate a list of vertices on each processor that needs to be recolored
in the next round to resolve the conflicts.

Given a pair of vertices involved in a conflict, it suffices to re-color only one of
them to resolve the conflict. The vertex to be recolored is determined by making use
of a global random function defined over all boundary vertices. In particular, each
processor Pi assigns a random number to each vertex in the set Bi ∪N1(Bi), where
Bi is the set of boundary vertices owned by Pi and N1(Bi) = ∪w∈BiN1(w). Each
random number rand(v) is generated using the global ID of the vertex v , to avoid the
need for processors to inquire each other of random values. The algorithm terminates
when no more vertices to be re-colored are left. A high-level structure of the algorithm
is given in Algorithm 1. The routines TentativelyColor and DetectConflicts
called in Algorithm 1 will be discussed in detail in §4.3 and §4.4, respectively. But
first we discuss a few fundamental techniques employed in Algorithm 1.

4.2. Conflict detection and relaying distance-2 color information. In ad-
dition to the design issues on data distribution, data duplication, and communication
protocol discussed in §3, the way in which conflicts are detected is a major issue in
the design of Algorithm 1. We employed a strategy in which for every path v, w, x on
three vertices, the processor on which the vertex w resides is responsible for detect-
ing not only conflicts that involve the vertex w and an adjacent vertex in N1(w) but
also a conflict involving the vertices v and x . We call the former (involving adjacent
vertices) type 1 conflicts, and the latter (involving vertices two edges apart) type 2
conflicts. A type 1 conflict is detected by both of the implied processors, whereas a
type 2 conflict is detected by the processor owning the middle vertex. Clearly, this
way of detecting a type 2 conflict is more efficient than the alternative in which the
conflict is detected by both of the processors owning the terminal vertices v and x .

As the termination condition of the while-loop in Algorithm 1 indicates, even if a
processor has no more vertices left to be re-colored in a round, i.e., Ui = ∅ , it could
still be active in that round, as the processor may need to provide color information
to other processors, participate in detecting conflicts on other processors, or both.

Another basic ingredient in the design of Algorithm 1 is the technique used to build
the list of forbidden colors for a given vertex v in a given superstep. The technique is
directly related with the strategies on data duplication and communication protocol
employed in the design of the algorithm (these were discussed in §3.2). The next two
paragraphs discuss elements of this technique.

Let Pi be the processor that owns the vertex v . The list of forbidden colors
for the vertex v consists of (1) colors assigned to adjacent vertices—those in the set

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 9

Pj

Pi Pi

x2

x1

v

w1w2

v

w

Pj
x

Pi v w

Pk

x1 x2

x3

(i) (ii) (iii)

Fig. 4.1. Scenarios depicting the distribution of the distance-2 neighbors of vertex v across
processors.

N1(v)—and (2) colors assigned to vertices exactly two edges away from v . These
colors are assigned either in a previous superstep (for boundary vertices) or prior to
the iterative coloring (for interior vertices). We classify these colors as local or nonlocal
relative to processor Pi on the onset of the superstep. A color of a vertex u is local
to Pi if Pi owns either the vertex u or some distance-1 neighbor of u (in which case
Pi would store a copy of u ’s color information, which is computed and sent by u ’s
owner). In contrast, a color is nonlocal to Pi if the information is not locally stored
and hence needs to be relayed via an “intermediate” processor.

Figure 4.1 shows the three scenarios in which the vertices on a path v, w, x may
be distributed among processors. Case (i) corresponds to the situation where both of
the vertices w and x (w1 and x1 or w2 and x2 in the figure) are owned by processor
Pi . Clearly, in this case, the colors of the vertices w and x are both local to Pi .
Case (ii) shows the situation where vertex w is owned by processor Pi and vertex
x is owned by processor Pj , j 6= i . In this case, again, the colors of both vertices
w and x are local to Pi . Case (iii) shows the situation where vertex w is owned
by processor Pj , and vertices v and x do not have a common distance-1 neighbor
owned by processor Pi . As depicted in the figure, vertex x may be owned by any
one of the three processors Pi , Pj , or Pk , i 6= j 6= k (shown as vertices x1 , x2 ,
and x3 , respectively). In this third case, if the vertex x is owned by either of the
processors Pj or Pk (shown as x2 and x3), then the color of x is nonlocal to processor
Pi and needs to be relayed to Pi through processor Pj . On the other hand, if the
vertex x is owned by processor Pi (shown as x1), then the color of x is, strictly
speaking, local to Pi and need not be relayed via Pj . However, in the algorithm
being described, since processor Pj does not store the adjacency lists of the vertices
owned by processor Pi , it would treat the color of x1 as if it were nonlocal to Pi

and send the color information to Pi . In other words, for every edge (v, w) in which
vertex v is owned by processor Pi and w is owned by Pj , processor Pj takes the
responsibility of building a list of colors used by vertices two edges away from the
vertex v (a partial list of forbidden colors to v) and sending the list to processor Pi .

4.3. The tentative coloring phase. Algorithm 2 outlines in detail the routine
TentativelyColor run on each processor Pi . The routine starts off by processor
Pi determining a coloring-schedule—a breakdown of its current set Ui of vertices to
be colored into supersteps (Line 2). Processor Pi then computes and sends schedule
information to each of its neighboring processors (Lines 3–5). Similarly, processor Pi

receives analogous schedules from each of its neighboring processors (Line 6). This
enables each processor to know the distance-2 color information it needs to send in

10 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

Algorithm 2 Tentative coloring phase of Algorithm 1 run on processor Pi .
1: procedure TentativelyColor(Ui)
2: Partition Ui into ni subsets Ui,1, Ui,2, . . . , Ui,ni , each of size s . ni = d |Ui|

s
e .

Vertices in Ui,` will be colored in the ` ’th superstep by processor Pi

3: for each processor-superstep pair (j, l) ∈ {{1, . . . , p} × {1, . . . , ni}} , j 6= i do
4: U j

i,` ← {v|v ∈ Ui,` and N1(v)∩Vj 6= ∅} . processor Pj is neighbor to processor Pi

5: Send schedules U j
i,` to each neighbor processor Pj

6: Receive schedules U i
j,` from each neighbor processor Pj

7: Xi,` ←
⋃

j
U i

j,` . Vertices in Xi,` will be colored in the ` ’th step by processors Pj , j 6= i

8: for each v ∈ Xi ∪ Ui , where Xi =
⋃

`
Xi,` do

9: color(v)← 0 . (re)initialize colors
10: L← max1≤j≤p {nj} . L is the max number of supersteps over all processors

11: for `← 1 to L do . each ` corresponds to a superstep

12: Build lists of forbidden colors for vertices in U i
j,`

13: Send the lists to each neighboring processor Pj where ` ≤ nj

14: if ` ≤ ni then . Pi has not finished coloring Ui

15: Receive lists of forbidden colors for vertices in U j
i,` from each neighboring Pj

16: Merge the lists of forbidden colors
17: Update the lists of forbidden colors with local color information
18: for each v ∈ Ui,` do
19: color(v)← c such that c > 0 is the smallest “permissible” color for v
20: Send updated colors of vertices in U j

i,` to each neighboring Pj

21: Receive updated colors of vertices in U i
j,` from each neighboring Pj

each superstep. In particular, using the schedules, for each superstep ` , processor Pi

constructs a list Xi,` of vertices that will be colored by some other processor Pj in
superstep ` and for which it must supply forbidden color information (Line 7). Thus
with the knowledge of each Xi,` , processor Pi can be “pro-active” in building up lists
of relevant forbidden color information and sending these to neighboring processors
in superstep ` .

Before the coloring of the vertices in the set Ui by processor Pi commences,
impermissible colors assigned in a previous superstep need to be cleared. These consist
of colors assigned to vertices in Ui (by processor Pi) and colors assigned to vertices in
Xi , which are to be colored by other processors in the current round (Lines 8 and 9).

Since for different processors Pi the number of vertices |Ui| to be colored could
differ, the number of supersteps required to color these vertices, ni = d |Ui|

s e , would
also vary. Processor Pi needs ni supersteps to color its vertices, but it may need to
supply forbidden color information to a neighboring processor that has not finished
coloring its vertices. Therefore, the algorithm overall needs L = max1≤j≤p {nj}
supersteps (see Line 10).

In each superstep, before processor Pi begins to color the set of vertices it owns,
it pro-actively builds and sends relevant color information to neighboring processors
(Lines 12 and 13). Further, to perform the coloring of its own vertices in a superstep,
a processor first gathers color information from other processors to build a partial
list of forbidden colors for each of its boundary vertices scheduled to be colored in
the current superstep. After the processor has received the partial lists of forbidden
colors from all of its neighboring processors, it merges these lists and augments them
with local color information to determine a complete list of forbidden colors for its
vertices scheduled to be colored in the current superstep. Using this information, the

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 11

Algorithm 3 Conflict detection phase of Algorithm 1 run on processor Pi .
1: function DetectConflicts
2: Wi ← ∅ . Wi is the set of vertices Pi examines to detect conflicts

3: for `← 1 to L do . uses schedules computed in Algorithm 2

4: for each w ∈ Ui,` where w has at least one neighbor in Xi,` do
5: Wi ←Wi ∪ {w} . w is used for detecting type 1 conflicts

6: for each w ∈ Vi where w has at least two neighbors in Xi,` ∪ Ui,` on different
processors do

7: Wi ←Wi ∪ {w} . w is used for detecting type 2 conflicts

8: for each j ∈ P = {1, . . . , p} do
9: Ri,j ← ∅ . Ri,j is a set of vertices Pi notifies Pj to recolor

10: for each w ∈Wi do
11: encountered[color(w)]← w
12: lowest[color(w)]← w
13: for each x ∈ N1(w) do
14: if encountered[color(x)] = w then
15: v ← lowest[color(x)]
16: if rand(v) ≤ rand(x) then . rand(u) : random number assigned to u

17: if v 6= w then
18: Ri,Id(x) ← Ri,Id(x) ∪ {x} . Id(u) : ID of processor owning u

19: else
20: Ri,Id(v) ← Ri,Id(v) ∪ {v}
21: lowest[color(x)]← x
22: else
23: encountered[color(x)]← w
24: lowest[color(x)]← x
25: for each j ∈ P , j 6= i do
26: Send Ri,j to processor Pj

27: for each j ∈ P , j 6= i do
28: Receive Rj,i from processor Pj

29: Ri,i ← Ri,i ∪Rj,i

30: return Ri,i

processor then speculatively colors the vertices of the current superstep. At the end
of the superstep, the new color information is sent to neighboring processors. These
actions are performed in the piece of code in Lines 14–20. Regardless of whether a
processor has finished coloring all of its vertices or not, it needs to receive updated
color information from neighboring processors (see Line 21). This information is
needed to enable the processor to compile forbidden color information to be sent to
other processors in the next superstep.

4.4. The conflict detection phase. Algorithm 3 outlines the conflict detection
routine DetectConflicts executed on each processor Pi . The routine has two
major parts. In the first part, the routine finds a subset Wi ⊂ Vi of vertices processor
Pi needs to examine to detect both type 1 and type 2 conflicts. Whenever a conflict
is detected, one of the involved vertices is selected to be recolored in the next round
to resolve the conflict. The selection makes use of the random values assigned to
boundary vertices in Algorithm 1. In the second part, the routine determines and
returns a set of vertices to be recolored by processor Pi in the next round.

Two vertices would be involved in a conflict only if they are colored in the same
superstep. Thus the vertex set Wi need only consist of (1) every vertex v ∈ Ui

that has at least one distance-1 neighbor on a processor Pj , j 6= i , colored in the

12 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

same superstep as v , and (2) every vertex v ∈ Vi that has at least two distance-1
neighbors on different processors that are colored in the same superstep, since these
might be assigned the same color. To obtain elements of the set Wi that satisfy one or
both of these two conditions in an efficient manner, in Algorithm 3, relevant vertices
on processor Pi are traversed a superstep at a time, using the schedule computed
in Algorithm 2. In each superstep ` , first each vertex in Ui,` and its neighboring
boundary vertices are marked. Then, for each vertex v ∈ Xi,` the vertices in the set
N1(v) owned by processor Pi are marked. If this causes some vertex to be marked
twice during the same superstep, then the vertex is added to Wi . The determination
of the set Wi is achieved by the piece of code in Lines 3–7 of Algorithm 3; details are
omitted for brevity.

Turning to the second part of Algorithm 3, processor Pi accumulates a list Ri,j

of vertices to be recolored by each processor Pj in the next round. To detect conflicts
around a vertex w in the set Wi , we need to look for vertices in the set N1(w)∪{w}
that have the same color. In a valid distance-2 coloring, every vertex in the set N1(w)∪
{w} needs to have a distinct color. If several vertices with the same color are found,
we let the vertex with the lowest random value keep its color and re-color the rest. To
perform these tasks efficiently, we use two color-indexed, one-dimensional, arrays—
encountered and lowest—that store vertices. The values stored in the two arrays
encode information that is updated and used in a for-loop that iterates over each vertex
w ∈ Wi . The context in each iteration in turn is a visit through the neighborhood
N1(w) of the vertex w . For each vertex w , encountered[c] = w indicates that
at least one vertex in N1(w) ∪ {w} having the color c has been encountered, and
lowest[c] stores the vertex with the lowest random value among these. Initially, both
encountered[color(w)] and lowest[color(w)] are set to be w . This ensures that any
conflict involving the vertex w and one of the vertices in the set N1(w) would be
discovered. To detect conflicts involving the neighbors of w , the algorithm checks
whether a given color used by a vertex in N1(w) has been encountered more than
once, and if so, the vertex to be recolored is determined using the random values
assigned to the vertices and the array lowest is updated accordingly. See the for-loop
in Lines 10–24 for details.

In Algorithm 3, a type 1 conflict involving adjacent vertices is detected by both
of the implied processors. Thus the if-test in Line 17 is included to avoid sending
unnecessary notification from one processor to the other. Note also that in Line 13, it
would have been sufficient to check for conflicts only using vertices N1

′(w) ⊆ N1(w)
that belong to either Ui or Xi . However, since determining the subset N1

′(w) takes
more time than testing for a conflict, we use the larger set N1(w) in Line 13.

When the lists Ri,j processor Pi accumulates are complete, processor Pi sends
each list Ri,j to processor Pj , j 6= i , to notify the latter to do the re-coloring
(Lines 25–26). Processor Pi itself is responsible for re-coloring the vertices in Ri,i

and therefore adds to Ri,i notifications Rj,i received from each neighboring processor
Pj (Lines 27–29).

4.5. Complexity. In Algorithm 2, the overall sequential work carried out by
processor Pi and its neighboring processors in order to perform the coloring of the
vertices in Ui is O(Σv∈Uid2(v)). Summing over all processors, the total work (ex-
cluding communication cost) involved in coloring the vertices in the set U = ∪Ui is
O(Σv∈Ud2(v)), which is equivalent to the complexity of a sequential algorithm for
coloring the vertex set U .

Turning to the communication cost involved in Algorithm 2, note that for each

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 13

vertex v ∈ Ui , every neighboring processor sends to processor Pi the union of the
colors used by vertices at exactly two edges from the vertex v , while the color of the
vertex v is sent to every processor that owns a distance-1 neighbor of v . Thus the total
size of data exchanged while coloring the vertex v is bounded by O(d2(v)), which in
turn gives the bound O(Σv∈Ud2(v)), where U = ∪Ui , on the overall communication
cost of Algorithm 2.

In Algorithm 3, in determining the set Wi (in Lines 3–7), at most |Vi| vertices are
processed. The per-vertex work involved in this process is proportional to the degree-
1 of the vertex. Hence, the time needed to determine Wi is bounded by O(|Vi|d1),
where d1 is the average degree-1 in the input graph G . Further, in each iteration
of the for-loop over the set Wi in Lines 10–24, the set of vertices to be recolored is
determined in time O(d1(w)), which gives a complexity of O(|Wi|d1) for the entire
for-loop. Since |Wi| ≤ |Vi| clearly holds, the overall complexity of Algorithm 3 is
O(|Vi|d1).

With the complexities of Algorithms 2 and 3 just established and assuming that
the number of rounds required in Algorithm 1 is sufficiently small, the total work
carried out by all of the p processors in coloring the input graph G = (V, E) is
O(|V|d2), which is the same as the complexity of the sequential algorithm. The
experimental results reported in §6 attest that the number of rounds for large-size
graphs that arise in practice is indeed fairly small; the observed number was about
half a dozen in most cases, and never more than a few dozens, while coloring graphs
with millions of edges and employing as many as a hundred processors.

4.6. Variations. Algorithm 1 and its subroutines Algorithms 2 and 3 could be
specialized along several axes to result in a variety of derived algorithms. We discuss
three of these axes.

First, in Algorithm 1, interior vertices (Ii) are colored before boundary vertices
(Bi), but the reverse order could also be considered.

Second, while coloring the vertices in a superstep on each processor (see Line 18
of Algorithm 2), the natural ordering of the vertices, a random ordering, or any other
degree-based ordering technique could be used [14].

Third, the choice of a color for a vertex in a superstep (see Line 19 of Algorithm 2)
could be done in several different ways. For example, a First Fit (FF), a Staggered
First Fit (SFF), or a randomized coloring strategy could be used [5]. In the FF
strategy, each processor chooses the smallest allowable color for a vertex, starting from
color 1. In the SFF strategy, each processor Pi chooses the smallest permissible color
from the set {d iK

p e, . . . ,K} , where the initial estimate K is set to be, for example,
equal to the lower-bound ∆+1 on the distance-2 chromatic number. If no such color
exists, then the smallest permissible color in {1, . . . , b iK

p c} is chosen. If there still
is no such color, the smallest permissible color greater than K is chosen. Since the
search for a color in SFF starts from different “base colors” for each processor, SFF
is likely to result in fewer conflicts than FF.

5. Parallel Restricted Star and Partial Distance-2 Coloring. The algo-
rithms presented in the previous section need to be modified only slightly to solve
the two related problems of our concern, restricted star coloring on a general graph
(for Hessian computation) and partial distance-2 coloring on a bipartite graph (for
Jacobian computation). In this section we point out the specific changes that need to
be made in Algorithms 1–3 to address these two problems.

14 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

Algorithm 4 Basic difference between distance-2 and partial distance-2 coloring.
procedure D2Coloring(G = (V, E))

for each v ∈ V do
for each w ∈ N1(v) do

Forbid color(w) to v
for each x ∈ N1(w) do

Forbid color(x) to v
Assign a color to vertex v

procedure PD2Coloring(Gb = (V1,V2, E))
for each v ∈ V2 do

for each w ∈ N1(v) do
. w ∈ V1 never receives a color

for each x ∈ N1(w) do
Forbid color(x) to v . x ∈ V2

Assign a color to vertex v

5.1. Restricted star coloring. As the definition given in §2.2 implies, in a
restricted star coloring of a graph, the color assigned to a vertex v needs to satisfy
conditions that concern the distance-2 neighbors N2(v) of the vertex v . The exact
same neighborhood is consulted in assigning a color for the vertex v in a distance-
2 coloring of the graph. Therefore, the greedy algorithms for the two variants of
coloring (as developed in [14]) differ only in the way the set of forbidden colors for the
vertex v is determined. We describe this difference below in the sequential setting;
the additional differences that arise in the parallel setting are fairly straightforward
to implement and their discussion is omitted.

Consider the step of a greedy algorithm (distance-2 or restricted star coloring)
in which the vertex v is to be colored, and let v, w, x be a path in the distance-2
neighborhood of the vertex v . In the distance-2 coloring algorithm, both color(w)
and color(x) are forbidden to the vertex v , since the path needs to have three distinct
colors. In the restricted star coloring algorithm, on the other hand, color(w) would
always be forbidden to v , whereas color(x) may or may not be forbidden. The
decision in the latter case is made based on further tests:

• If color(w) = 0 (i.e., vertex w is not yet colored), then color(x) is forbidden
to v . This ensures that any extension v, w, x, y of the path v, w, x would
end up using at least three colors, as desired, since in the step in which the
vertex w is colored, the distance-1 coloring requirement guarantees that the
vertex w gets a color distinct from color(v) and color(x).

• If color(w) 6= 0, then color(x) is forbidden to v only if color(w) > color(x).

5.2. Partial distance-2 coloring. Here, the input is a bipartite graph Gb =
(V1,V2, E), and only the vertex set V2 needs to be colored satisfying the condition
that a pair of vertices from V2 sharing a common distance-1 neighbor in V1 receive
different colors. If not already distributed, the graph Gb needs to be partitioned
among the processors in a manner that minimizes boundary vertices (and hence the
likelihood of conflicts and the size of overall communication). Assuming a vertex
partitioning is used, let V1,1, . . . , V1,p denote the partitioning of the set V1 , and
let V2,1, . . . , V2,p denote the partitioning of the set V2 . The subgraph assigned to
processor Pi would then be Gb,i = (V1,i, V2,i, Ei), where Ei is the set of edges incident
on vertices in V1,i∪V2,i . In terms of the underlying matrix, such a partitioning means
that each processor owns a subset of the rows as well as a subset of the columns;
this is in contrast with the case where either only the columns or only the rows are
partitioned. With such a partitioning in place, the only change that needs to be made
in Algorithm 1 is to replace the two references to Vi (in Lines 4 and 5) with V2,i .

The changes that need to be made in Algorithms 2 and 3 are minimal as well, and
they are consequences of the basic difference between distance-2 coloring in a general
graph G = (V, E) and partial distance-2 coloring in a bipartite graph Gb = (V1,V2, E)
illustrated by the code fragment in Algorithm 4.

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 15

Table 6.1
Structural properties of the application (top), and the synthetic (bottom) test graphs used in

the experiments. The last column shows the number of edges in G2 = (V,F) compared to G =
(V, E) . (ST–Structural Engineering [26], SH–Ship Section [28], CA–Linear Car Analysis [28], AU–
Automotive [26], CE–Civil Engineering [26]).

app/ name |V| |E| Degree colors exec. time (s)
|F|
|E|

class max avg d1 d2 d1 d2

nasasrb 54,870 1,311,227 275 48 41 276 0.049 2.237 3.2
ST ct20stif 52,329 1,323,067 206 51 49 210 0.063 2.581 3.8

pwtk 217,918 5,708,253 179 52 48 180 0.229 10.335 2.9
shipsec8 114,919 3,269,240 131 57 54 150 0.128 6.776 3.5

SH shipsec1 140,874 3,836,265 101 55 48 126 0.143 7.457 3.1
shipsec5 179,860 4,966,618 125 55 50 140 0.190 9.852 3.2
bmw7st1 141,347 3,599,160 434 51 54 435 0.167 6.730 3.3

CA bmw3 2 227,362 5,530,634 335 49 48 336 0.274 10.077 3.2
inline1 503,712 18,156,315 842 72 51 843 0.925 55.217 7.0
hood 220,542 5,273,947 76 48 42 103 0.277 9.407 3.2

AU msdoor 415,863 9,912,536 76 48 42 105 0.520 17.438 3.2
ldoor 952,203 22,785,136 76 48 42 112 1.197 40.180 3.2
pkustk10 80,676 2,114,154 89 52 42 126 0.091 3.904 2.9

CE pkustk11 87,804 2,565,054 131 58 66 198 0.103 6.041 4.2
pkustk13 94,893 3,260,967 299 69 57 303 0.155 9.302 6.0

planar plan-1 4,072,937 12,218,805 40 6 9 41 3.435 18.880 3.4
random rand-1 400,000 2,002,202 27 10 9 41 0.644 6.676 11
random rand-2 400,000 4,004,480 45 20 12 101 1.242 21.977 21
s. world sw-1 400,000 1,998,542 468 10 18 469 0.345 13.909 31
s. world sw-2 400,000 3,993,994 880 20 27 882 0.632 50.954 59

6. Experiments. In this section we present results on experimental evaluation
of the performance of the algorithms presented in the previous two sections. The
algorithms are implemented in C using the MPI message-passing library.

6.1. Experimental setup.
Test platform. The experiments are carried out on a 96-node PC cluster equipped

with dual 2.4 GHz Intel P4 Xeon CPUs and 4 GB memory. The nodes of the cluster
are interconnected via a switched 10Gbps Infiniband network.

Test graphs. Our first test set consists of 15 real-world graphs obtained from
five different application areas: structural engineering, ship section design, linear car
analysis, automotive design, and civil engineering [12, 24, 26, 28]. The top part of
Table 6.1 lists the number of vertices, number of edges, maximum degree-1, and
average degree-1 in each of these test graphs. The graphs are classified according to
the application area they are drawn from. Table 6.1 also lists the number of colors
and the execution time in seconds used by greedy sequential distance-1 and distance-
2 coloring algorithms when each is run on a single node of our test platform. The
last column lists the ratio between the number of edges in the square graph G2 and
the number of edges in G . These computed quantities will be used to gauge the
performance of the proposed parallel coloring algorithms on the input graphs G .

To be able to study the scalability of the proposed algorithms on a wider range
of graph structures, we have also run experiments on synthetically generated graphs,
which constitute our second test set. To represent extreme cases, the synthetic graphs
considered included instances drawn from three different graph classes: random, pla-
nar and small-world graphs. (Loosely speaking, a small-world graph is a graph in
which the distance between any pair of non-adjacent vertices is fairly small.) The

16 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

random and small-world graphs are generated using the GTgraph Synthetic Graph
Generator Suite [27]. The planar graphs are maximally planar—the degree of every
vertex is at least five—and are generated using the expansion method described in [21];
the generator is a part of the graph suite for the Second DIMACS Challenge [25]. The
structural properties of these graphs as well as the number of colors and runtime used
by sequential distance-1 and distance-2 coloring algorithms run on them are listed in
the bottom part of Table 6.1.

In the runtimes reported in Table 6.1 as well as in later figures in this section,
each individual test is an average of five runs. In the timing of the parallel coloring
code, we assume that the graph is initially partitioned and distributed among the
nodes of the parallel machine, and thus the times reported concern only coloring. In
all of the experiments, the input graph is partitioned using the tool MeTiS [17].

6.2. Performance of the sequential algorithms. Before we proceed with
evaluating the performance of the proposed parallel coloring algorithms, it is worth-
while to observe that the underlying sequential greedy algorithms, in both the distance-
1 and the distance-2 coloring cases, performed remarkably well in terms of number
of colors used on both the application and synthetic test graphs. Specifically, as
Table 6.1 shows, the number of colors used by the greedy sequential distance-1 col-
oring algorithm is in most cases slightly below the average degree and far below the
maximum degree, which is an upper bound on the optimal solution (the distance-1
chromatic number). Even more remarkably, the number of colors used by the greedy
sequential distance-2 coloring algorithm in most cases is observed to be very close to
the maximum degree, which is a lower bound on the optimal solution (the distance-2
chromatic number). Thus the solution obtained by the greedy distance-2 coloring
algorithm is in most cases either optimal or just a few colors more. In both of these
greedy algorithms, the vertices were colored in the natural order they appear in the
input graphs.

6.3. Results on parallel distance-2 coloring. In this section we present de-
tailed experimental results on the parallel distance-2 coloring algorithm for general
graphs discussed in §4. In §6.4 we shall present results on the related algorithms,
restricted star coloring on general graphs and partial distance-2 coloring on bipar-
tite graphs. In §6.6 we present results on the alternative approach of obtaining a
distance-2 coloring by distance-1 coloring the square graph.

6.3.1. Choice of superstep size. Our first set of experiments, the results of
which is given in Figure 6.1, is conducted to study the dependence of the performance
of Algorithm 1 on the choice of the superstep size s , the number of vertices colored in
a superstep before communication takes place. The experiments are conducted using
the application test graphs and the reported results are averages over each class,
while using 32 processors . We obtained similar results while experimenting with
various other number of processors, but we report only for 32 processors for space
considerations.

Figure 6.1(a) shows a plot of the number of conflicts, normalized relative to the
total number of vertices in the graph, as a function of superstep size. As one would
expect, the normalized number of conflicts and the number of rounds (not shown here)
increased as the superstep size s was increased, but the rate of increase remained fairly
low once the value of s passed a few hundred. Figure 6.1(b) shows that, for values of
s above a few hundred, further increase in s does not significantly influence speedup.
Similarly, our experiments (not shown here) showed that the number of colors does

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 17

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Superstep size

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|

AU
ST
SH
CA
CE

(a)

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

Superstep size

S
p

ee
d

u
p

AU
ST
SH
CA
CE

(b)

Fig. 6.1. Normalized number of conflicts and speedup, while varying superstep size s for p = 32 .

not vary significantly with s , and stays within 12% of the number of colors used by
the sequential algorithm. In general, an “optimal” value for s is likely to depend on
both the properties of the graph being colored (size and density) and the platform on
which the algorithm is executed. Based on observations from our parallel experiments,
we used a superstep size of 100 for the scalability studies we report on in the rest of
this section.

6.3.2. Strong scaling results. Our second set of experiments is concerned with
the strong scalability of the parallel distance-2 coloring algorithm as the number of
processors used is varied. This set of experiments was conducted on both the applica-
tion and synthetic test graphs. The results from the experiments on the application
graphs are summarized in Figure 6.2, and those from the synthetic graphs are sum-
marized in Figure 6.3. In the results shown in Figure 6.2, the largest graph from each
application category was used. A more detailed set of results on all of the applica-
tion test graphs for the distance-2 as well as the restricted star coloring algorithm is
included in a table in the Appendix.

Results on application test graphs. The results in Figures 6.2(a) and 6.2(b) show
that the number of conflicts and the number of rounds increase with increasing number
of processors. However, the rate of growth as well as the actual values of both of these
quantities was observed to be fairly small for all graphs except pkustk13 and inline1,
the densest graphs in our test set. The reason for the relatively large number of
rounds required in coloring the graph inline1 is the existence of vertices with very
large degree-1. This phenomenon will be explained further with the help of synthetic
graphs shortly.

The metrics number of conflicts and number of rounds are in some sense “interme-
diate” performance measures for our parallel coloring algorithms. They are included in
the reports to help explain results on the two ultimate performance metrics—speedup
and number of colors used. The lower row of Figure 6.2 shows results on the latter
two metrics. We will use a similar set of four metrics in several other experiments
reported in this section.

The speedup results in Figure 6.2(c) demonstrate that our algorithm in general
scales well with increasing number of processors. As expected, the obtained speedup
is relatively poorer in the cases where the number of conflicts and the number of
rounds is relatively higher. The proposed algorithm also performed well in terms of
the number of colors used. The results in Figure 6.2(d) show that the number of

18 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of processors

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|

ldoor
pwtk
shipsec5
inline_1
pkustk13

(a)

0 20 40 60 80 100

2

4

6

8

10

12

14

16

18

20

Number of processors

N
u

m
b

er
 o

f
ro

u
n

d
s

ldoor
pwtk
shipsec5
inline_1
pkustk13

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

ldoor
pwtk
shipsec5
inline_1
pkustk13

(c)

0 20 40 60 80 100
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Number of processors

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

lo
rs

ldoor
pwtk
shipsec5
inline_1
pkustk13

(d)

Fig. 6.2. Normalized number of conflicts (a), number of rounds (b), speedup (c), and normalized
number of colors (d) while varying the number of processors for the application test graphs. In all
cases, superstep size s = 100 was used.

colors used by our parallel algorithm, when as many as 96 processors are used, is at
most 12% more than that used by the sequential algorithm. Recall that the solution
obtained by the sequential algorithm in most cases is nearly optimal.

Results on synthetic test graphs. We now turn attention to results on the synthetic
graphs, which are designed to capture “extreme cases”. The planar graph plan-1 rep-
resents extremely well partition-able graphs—almost all of the vertices of plan-1 were
interior vertices in a partition obtained using the tool MeTiS [17]. For such graphs
parallel speedup in the context of Algorithm 1 comes largely from graph partitioning
(data distribution) as opposed to the iterative coloring part. As Figure 6.3 shows this
results in very small number of conflicts and good speedup.

The random graphs rand-1 and rand-2 represent the opposite extreme—almost all
of the vertices in these graphs are boundary regardless of how the graph is partitioned.
As expected, Figure 6.3 shows that the number of conflicts is considerably larger for
the random graphs. Nonetheless, our algorithm achieved some speedup (a constant
around 10) even under such an extreme case. Note that the speedup in this case
comes solely from the iterative coloring part.

As mentioned earlier, graphs having vertices with very large degrees comprise
a particularly difficult set of instances for the proposed parallel distance-2 coloring
algorithm. Resolving conflicts involving the neighbors of such vertices requires a

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 19

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|

plan−1
rand−1
rand−2
sw−1
sw−2

(a)

0 20 40 60 80 100

20

40

60

80

100

120

140

160

Number of processors

N
u

m
b

er
 o

f
ro

u
n

d
s

plan−1
rand−1
rand−2
sw−1
sw−2

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Number of processors

S
p

ee
d

u
p

plan−1
rand−1
rand−2
sw−1
sw−2

(c)

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

Number of processors

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

lo
rs

plan−1
rand−1
rand−2
sw−1
sw−2

(d)

Fig. 6.3. Normalized number of conflicts (a), number of rounds (b), speedup (c), and normalized
number of colors (d) while varying the number of processors for the synthetic test graphs. In all
cases, superstep size s = 100 was used.

large number of rounds which in turn degrades speedup. The third category in our
synthetic graphs, the small-world graphs sw-1 and sw-2, are included to represent such
a class of pathological instances for our approach. As Figure 6.3 shows, even though
the number of conflicts for small-world graphs is not necessarily larger than that for
random graphs with similar sizes, coloring small-world graphs required significantly
larger number of rounds. Consequently, the speedup achieved was poorer—it was
around 3 for all numbers of processors we experimented with.

As can be seen from Figure 6.3(d), the normalized number of colors for all the
synthetic graphs except rand-2 is within 12% of the sequential algorithm. For rand-2,
there are relatively many conflicts but few rounds. This entails that many processors
recolor a fairly large number of vertices in each round to resolve the conflicts. Over
multiple rounds, this results in a significant increase in the number of colors used.
This is in contrast to small world graphs, where many fewer vertices are recolored in
many more rounds. This resembles sequential coloring, hence the number of colors
increases only slightly.

6.3.3. Weak scaling. Our next set of experimental results is on weak scalability,
where both problem size and number of processors are increased in proportion so as to
result in nearly constant runtime. The experiments were conducted on five instances
from each of random and planar graph classes. The structural properties of these

20 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

name |V| |E| Degree
max avg

plan-2 1,625,972 4,877,910 37 6
plan-3 3,250,939 9,752,811 43 6
plan-4 4,888,479 14,665,431 43 6
plan-5 6,513,589 19,540,761 38 6
plan-6 8,150,267 24,450,795 39 6
rand-3 160,000 1,600,528 45 20
rand-4 320,000 3,201,327 46 20
rand-5 480,000 4,803,946 43 20
rand-6 640,000 6,403,242 44 20
rand-7 800,000 8,005,505 45 20 0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

Number of processors

R
u

n
 t

im
e

(s
ec

o
n

d
s)

random
planar

Fig. 6.4. Properties of the synthetic test graphs used in weak scaling tests (left) and results for
distance-2 coloring (right).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Number of processors

N
u

m
b

er
 o

f
co

n
fl

ic
ts

 /
|v

|

plan−1
rand−1
rand−2
sw−1
sw−2

(a)

0 20 40 60 80 100

20

40

60

80

100

120

140

160

Number of processors

N
u

m
b

er
 o

f
ro

u
n

d
s

plan−1
rand−1
rand−2
sw−1
sw−2

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Number of processors

S
p

ee
d

u
p

plan−1
rand−1
rand−2
sw−1
sw−2

(c)

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

Number of processors

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

lo
rs

plan−1
rand−1
rand−2
sw−1
sw−2

(d)

Fig. 6.5. Normalized number of conflicts (a), number of rounds (b), speedup (c), and normalized
number of colors (d) while using SFF color selection strategy and varying the number of processors
for the synthetic graphs in Table 6.1. Superstep size s = 100 .

graphs and the experimental results are summarized in Figure 6.4. It can be seen
that the algorithm behaved almost ideally for planar graphs—the runtime remained
nearly constant as the problem size and the number of processors were increased in
proportion. For the random graphs, the runtime grew, but it did so fairly slowly.

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 21

0 20 40 60 80 100
0

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

ldoor
pwtk
shipsec5
inline_1
pkustk13

(a)

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

Number of processors

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
co

lo
rs

ldoor
pwtk
shipsec5
inline_1
pkustk13

(b)

Fig. 6.6. Speedup (a) and normalized number of colors (b) for the restricted star coloring
algorithm.

6.3.4. Variations of the algorithm. In the results presented thus far in this
section, a variant of the proposed distance-2 coloring algorithm with the following
combination of parameters was used: interior vertices were colored before boundary
vertices; the natural ordering of the vertices was used while coloring; and a FF color
choice strategy was employed. In addition to this “default” variant, we experimented
with seven other variations in which interior vertices are colored after boundary ver-
tices, a random vertex ordering is used while coloring, and a SFF color choice strategy
(as discussed in §4.6) is used. The experiments showed that the only option that re-
sulted in better performance in the majority of the test cases compared to the default
variant was the use of the SFF coloring strategy. Figure 6.5 shows the performance
of the SFF-coloring based variant on the synthetic test graphs. Results on the appli-
cation graphs are omitted as no significant improvement over the FF-based variant
was observed.

As Figure 6.5 shows, the performance improvement with SFF was especially sig-
nificant for the random and small-world graphs. The number of conflicts and the
number of rounds were much smaller for these graphs when SFF is used instead of
FF; hence better speedup was achieved. For small-world graphs, the SFF strategy
required significantly more colors than FF, whereas for random graphs SFF required
about the same number of colors for the random graph rand-1, and fewer colors for
the denser random graph rand-2.

6.4. Results on parallel restricted star coloring. As discussed in §5, a par-
allel restricted star coloring of a graph can be obtained via a slight modification of
the parallel distance-2 coloring algorithm. We have performed the necessary modifi-
cations and carried out experiments on the scalability of the resulting restricted star
coloring algorithm. Figure 6.6(a) shows speedup results obtained when the restricted
star coloring algorithm was run on the largest graph from each of the application
graph classes listed in Table 6.1. As expected, these speedup results are very similar
to those for distance-2 coloring (Figure 6.2(c)). The normalized number of colors
used by the restricted star coloring algorithms are given in Figure 6.6(b). As results
in the table in the appendix show, for many of the test graphs, restricted star coloring
gives fewer colors than distance-2 coloring, demonstrating the advantage of exploiting
symmetry.

22 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

Table 6.2
Structural properties of the additional test graphs [26] used for partial distance-2 coloring and

experimental results.

name |V1| |V2| |E| sequential speedup/num. of colors
cols. time p=16 p=48 p=96

lhr71c 70,304 70,304 1,528,092 65 1.43 11.3/66 13.8/67 6.8/66
stormG2 528,185 1,377,306 3,459,881 48 0.85 7.5/48 7.1/48 3.0/48
cont11 l 1,468,599 1,961,394 5,382,999 8 0.52 5.2/12 6.9/13 5.3/13
cage13 445,315 445,315 7,479,343 118 2.27 4.6/114 4.2/119 2.7/113
cage14 1,505,785 1,505,785 27,130,349 136 8.86 3.4/129 4.9/131 3.5/130

0 20 40 60 80 100
0

10

20

30

40

50

60

Number of processors

S
p

ee
d

u
p

ldoor
pwtk
shipsec5
inline_1
pkustk13

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Number of processors

S
p

ee
d

u
p

plan−1
rand−1
rand−2
sw−1
sw−2

(b)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

Number of processors

R
u

n
 t

im
e

(s
ec

o
n

d
s)

random
planar

(c)

Fig. 6.7. Speedup for distance-1 coloring of G2 on the application test graphs (a) and the
synthetic test graphs (b) listed in Table 6.1. Weak scaling for distance-1 coloring of G2 on the
synthetic graphs given in Figure 6.4 (c).

6.5. Results on parallel partial distance-2 coloring of bipartite graphs.
We tested the partial distance-2 coloring algorithm on bipartite graphs of five non-
symmetric matrices obtained from [26]. Structural properties of these graphs as well as
the sequential and parallel partial distance-2 coloring results are given in Table 6.2. In
each test case except for cont11 l, the number of colors used by the parallel algorithm
was observed to be within 2% of the sequential algorithm. For cont11 l, the number
of colors increased from 8 up to 13 when using the parallel algorithm. The speedup
here is poorer than the distance-2 coloring case on general graphs in part because the
partitioner is less suitable for bipartite graphs.

6.6. Results on parallel distance-1 coloring of G2 . As discussed in §2,
the distance-2 coloring problem on a graph G can be solved by constructing and then
distance-1 coloring the square graph G2 . This alternative method has the same overall
asymptotic time complexity as a greedy distance-2 coloring on the graph G , but the
actual runtimes of the two approaches could differ substantially.

We have done experiments on this alternative approach using the graphs listed
in Table 6.1. For these graphs, the ratio of the number of edges in G2 to that in G
is listed in the last column of Table 6.1. As one can see from the table, the storage
requirement for G2 could be up to 7 times larger than what is needed for G for the
application graphs, and up to 59 times larger for the synthetic graphs.

To construct G2 in parallel, each processor requires the adjacency lists of distance-
1 neighbors of its boundary vertices. This requires communication between processors
similar to the forbidden color communication in a single round of the proposed parallel
distance-2 coloring algorithm. However, instead of a union of colors, adjacency lists
are exchanged. Thus the communication cost is larger.

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 23

Figure 6.7 shows strong and weak scaling results of the approach based on distance-
1 coloring of G2 . The timing for this method includes parallel construction of G2 and
parallel distance-1 coloring of G2 using the algorithm presented in [5]. While com-
puting speedup, the sequential greedy distance-2 coloring algorithm is used as the
reference. Therefore, the results in Figures 6.7(a) and 6.7(b) are directly comparable
to those in Figures 6.2(c) and 6.3(c), respectively. The results show that the alterna-
tive approach discussed in this section is slower and scales worse than the proposed
parallel distance-2 coloring algorithm.

7. Conclusion. We have presented efficient distributed-memory parallel algo-
rithms for three closely related coloring problems that arise in the efficient computa-
tion of sparse Jacobian and Hessian matrices using automatic differentiation or finite
differencing. The problems are distance-2 coloring of general graphs, restricted star
coloring of general graphs, and partial distance-2 coloring of bipartite graphs. The
scalability of the proposed algorithms has been demonstrated on a variety of appli-
cation as well as synthetic test graphs. MPI implementations of the algorithms have
been made available to the public through the Zoltan library.

As the experimental results showed, the number of rounds required in coloring
graphs in which a small fraction of the vertices are of relatively very large degree
(e.g. small world graphs) could be fairly high (in the order of a hundred). A separate
treatment of such vertices could improve the performance of the proposed algorithm.
We plan to explore this in a future work.

Acknowledgments. We thank the anonymous referees for their valuable com-
ments, which helped us improve the presentation of this paper.

REFERENCES

[1] G. Agnarsson, R. Greenlaw, and M.M. Halldórsson, On powers of chordal graphs and
their colorings, Congr. Numer., 100 (2000), pp. 41–65.

[2] G. Agnarsson and M.M. Halldórsson, Coloring powers of planar graphs, SIAM J. Discr.
Math., 16 (2003), pp. 651–662.

[3] R.H. Bisseling, Parallel Scientific Computation: A Structured Approach Using BSP and MPI,
Oxford, 2004.

[4] D. Bozdağ, U. Catalyurek, A.H. Gebremedhin, F. Manne, E.G. Boman, and F. Özgüner,
A parallel distance-2 graph coloring algorithm for distributed memory computers, in Pro-
ceedings of HPCC 2005, vol. 3726 of Lecture Notes in Computer Science, Springer, 2005,
pp. 796–806.

[5] D. Bozdağ, A. H. Gebremedhin, F. Manne, E. G. Boman, and U. V. Catalyurek, A
framework for scalable greedy coloring on distributed-memory parallel computers, Journal
of Parallel and Distributed Computing, 68 (2008), pp. 515–535.

[6] U. V. Catalyurek and C. Aykanat, Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication, IEEE Transactions on Parallel and Distributed
Systems, 10 (1999), pp. 673–693.

[7] T. F. Coleman and J. J More, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 1 (1983), pp. 187–209.

[8] T. F. Coleman and J. J. Moré, Estimation of sparse Hessian matrices and graph coloring
problems, Math. Program., 28 (1984), pp. 243–270.

[9] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian
matrices, J. Inst. Math. Appl., 13 (1974), pp. 117–119.

[10] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, Zoltan data manage-
ment services for parallel dynamic applications, Computing in Science and Engineering, 4
(2002), pp. 90–97.

[11] A.H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph coloring
for computing derivatives, SIAM Rev., 47 (2005), pp. 629–705.

24 BOZDAĞ, ÇATALYÜREK, GEBREMEDHIN, MANNE, BOMAN, AND ÖZGÜNER

[12] A. H. Gebremedhin and F. Manne, Scalable parallel graph coloring algorithms, Concurrency:
Practice and Experience, 12 (2000), pp. 1131–1146.

[13] A. H. Gebremedhin, F. Manne, and A. Pothen, Parallel distance-k coloring algorithms
for numerical optimization, in proceedings of Euro-Par 2002, vol. 2400, Lecture Notes in
Computer Science, Springer, 2002, pp. 912–921.

[14] A. H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen, New acyclic and star coloring
algorithms with application to computing Hessians, SIAM J. Sci. Comput., 29 (2007),
pp. 1042–1072.

[15] D. Hysom and A. Pothen, A scalable parallel algorithm for incomplete factor preconditioning,
SIAM J. Sci. Comput., 22 (2001), pp. 2194–2215.

[16] M.T. Jones and P.E. Plassmann, Scalable iterative solution of sparse linear systems, Parallel
Computing, 20 (1994), pp. 753–773.

[17] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, SIAM J. Sci. Comput., 20 (1999).

[18] S. O. Krumke, M.V. Marathe, and S.S. Ravi, Models and approximation algorithms for
channel assignment in radio networks, Wireless Networks, 7 (2001), pp. 575 – 584.

[19] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan, End-to-end packet-
scheduling in wireless ad-hoc networks, in SODA 2004: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 1021–1030.

[20] S. T. McCormick, Optimal approximation of sparse Hessians and its equivalence to a graph
coloring problem, Math. Programming, 26 (1983), pp. 153 – 171.

[21] C. A. Morgenstern and H. D. Shapiro, Heuristics for rapidly four-coloring large planar
graphs., Algorithmica, 6 (1991), pp. 869–891.

[22] M. J. D. Powell and P. L. Toint, On the estimation of sparse Hessian matrices, SIAM J.
Numer. Anal., 16 (1979), pp. 1060–1074.

[23] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices, SIAM
J. Sci. Comput., 17 (1996), pp. 830–847.

[24] M. M. Strout and P. D. Hovland, Metrics and models for reordering transformations, in
Proceedings of the Second ACM SIGPLAN Workshop on Memory System Performance,
2004, pp. 23–34.

[25] The Second DIMACS Challenge. http://mat.gsia.cmu.edu/challenge.html.
[26] University of Florida sparse matrix collection. Available at http://www.cise.ufl.edu/

research/sparse/matrices/.
[27] GTgraph: A suite of synthetic graph generators. http://www-static.cc.gatech.edu/∼kamesh/

GTgraph/.
[28] Test data from the Parasol project. Available at http://www.parallab.uib.no/projects/

parasol/data/.

PARALLEL GRAPH COLORING FOR DERIVATIVE COMPUTATION 25

Appendix A.

Table A.1
Results for parallel distance-2 coloring and restricted star coloring for the application graphs

using s = 100 . In columns 6 and 10, the number of colors used by the respective sequential greedy
coloring algorithm is given in parentheses. Abbreviations: normalized (norm), number (nr), conflicts
(cflicts), rounds (rnds), speedup (spdup), colors (cols), number of processors (p).

distance-2 coloring restricted star coloring
graph norm. nr. of nr. of norm. nr. of nr. of

p name cflicts rnds spdup cols cflicts rnds spdup cols

nasasrb 1.21% 5 10.1 276 (276) 1.98% 4 9.8 276 (100)
ct20stif 1.59% 6 8.8 210 (210) 1.32% 4 9.3 177 (210)
pwtk 0.09% 3 13.2 180 (180) 0.66% 4 11.3 180 (180)
shipsec8 0.87% 5 10.2 158 (150) 0.95% 4 10.8 158 (144)
shipsec1 0.85% 4 11.4 141 (126) 0.74% 4 11.0 126 (126)
shipsec5 0.35% 5 11.6 156 (140) 0.56% 4 11.2 141 (141)
bmw7st 1 0.85% 12 11.5 435 (435) 0.66% 3 11.8 432 (408)

16 bmw3 2 0.54% 4 11.2 336 (336) 0.64% 4 12.0 336 (204)
inline 1 0.36% 7 10.6 843 (843) 0.26% 4 9.8 843 (843)
hood 0.69% 4 13.4 108 (103) 0.67% 4 11.6 105 (79)
msdoor 0.31% 4 14.0 112 (105) 0.29% 4 12.5 105 (98)
ldoor 0.14% 4 14.7 119 (112) 0.14% 4 12.7 112 (91)
pkustk10 1.28% 5 11.0 127 (126) 0.81% 4 10.1 120 (114)
pkustk11 1.49% 5 9.4 219 (198) 0.75% 4 8.5 183 (174)
pkustk13 1.37% 4 9.1 302 (303) 0.95% 4 9.0 303 (279)

nasasrb 6.00% 24 8.9 276 (276) 4.87% 10 13.8 189 (100)
ct20stif 6.21% 9 12.9 210 (210) 4.42% 5 15.7 146 (210)
pwtk 0.66% 5 28.7 180 (180) 0.75% 4 27.7 180 (180)
shipsec8 2.14% 4 21.4 161 (150) 1.76% 4 20.9 140 (144)
shipsec1 2.09% 5 22.2 134 (126) 1.79% 4 23.2 126 (126)
shipsec5 1.06% 6 22.4 150 (140) 1.06% 4 23.1 144 (141)
bmw7st 1 2.44% 12 20.2 435 (435) 1.95% 4 23.7 435 (408)

48 bmw3 2 1.51% 12 24.3 336 (336) 1.17% 4 27.3 336 (204)
inline 1 1.31% 14 22.2 843 (843) 0.63% 4 24.2 843 (843)
hood 1.67% 5 30.8 113 (103) 1.73% 5 27.8 112 (79)
msdoor 0.85% 5 29.0 116 (105) 0.89% 4 28.9 108 (98)
ldoor 0.45% 4 36.5 117 (112) 0.46% 4 33.5 111 (91)
pkustk10 3.78% 5 17.4 133 (126) 3.02% 5 21.1 123 (114)
pkustk11 3.84% 5 16.8 209 (198) 3.02% 4 18.4 182 (174)
pkustk13 4.53% 6 16.1 306 (303) 2.19% 5 17.8 282 (279)

nasasrb 10.17% 23 6.7 276 (276) 7.90% 9 12.2 131 (100)
ct20stif 14.00% 15 9.2 210 (210) 11.26% 6 15.8 156 (210)
pwtk 2.02% 4 43.6 180 (180) 2.19% 5 38.4 180 (180)
shipsec8 4.43% 5 28.4 166 (150) 4.53% 5 28.1 138 (144)
shipsec1 3.60% 6 29.6 141 (126) 2.64% 5 31.7 133 (126)
shipsec5 2.33% 4 34.5 154 (140) 2.40% 4 35.0 132 (141)
bmw7st 1 5.59% 18 16.5 435 (435) 4.08% 5 28.8 399 (408)

96 bmw3 2 3.10% 11 25.8 350 (336) 2.44% 6 33.0 330 (204)
inline 1 2.22% 15 35.3 843 (843) 1.46% 5 34.1 789 (843)
hood 2.65% 6 39.4 115 (103) 2.84% 4 39.4 105 (79)
msdoor 1.65% 6 46.1 118 (105) 1.65% 4 46.2 130 (98)
ldoor 0.78% 4 60.6 121 (112) 0.79% 4 58.6 111 (91)
pkustk10 8.32% 8 22.2 130 (126) 6.19% 5 24.9 118 (114)
pkustk11 8.55% 6 20.7 198 (198) 6.44% 5 24.4 189 (174)
pkustk13 10.18% 8 21.2 314 (303) 4.90% 6 24.6 275 (279)

